Basic Numerical Concepts

Felix Wellschmied

uc3m

Macroeconomics Il

Wellschmied (UC3M) Basic Numerical Concepts 1/107

Motivation

Wellschmied (UC3M) Basic Numerical Concepts 2/107

Who Needs Numerical Methods

@ Macro economists.

@ Micro economists: Dynamic games and dynamic contracts.

Applied economists: Estimate (non-)parametric models.

Econometricians: Bootstrapping and simulations.

Wellschmied (UC3M) Basic Numerical Concepts 3/107

A Simple Growth Model

V(k,z) = ”cq,if({/"(c) + ﬁEV(k’,Z’)}

c=y—i
K'=01-¥6k+i, 0<§<1
y = zk®
7' = P(z2).

Goal: Find the policy function (and value function) keyr1 = ¢(ke, zt).

The "most basic” macro model, yet analytical solution only with § = 1.

Wellschmied (UC3M) Basic Numerical Concepts 4 /107

Algorithm Solving the Model

@ Discretize a grid for the state k and z.

@ Guess the (continuous and concave) value function VO(k, z).
@ Solve V(k,z) = mix{ln(c) ~|—BEV”_1(k’,z’)}.
C, !

Q Replace last iteration guess by new solution V"1 = V",

@ Iterate until |V" — V"] < crit.

Wellschmied (UC3M) Basic Numerical Concepts

Limits to VFI

This is great, but many problems are more complex.

Household has assets, a:, and housing, h:, and decides asy1, hey1.

@ It earns its productivity exp(z;).

Log productivity follows a Markov chain: Pj(zt41 = 2|z, = Z¥).

Ct + ary1 + ht+1 = a; + ht + exp(zt).

Wellschmied (UC3M) Basic Numerical Concepts 6 /107

Limits to VFI 1l

V(a, h,z) = m?x/{ U(c, h) + BEV(d, I, z’)}

c,a’,h

Two endogenous dynamic state variables a; and h;.

One exogenous state variable z;.

@ Assume | discretize N, = 1000, N, = 1000, N, = 5, these are
5,000,000 state combinations with 1,000,000 choices.

5,000,000,000,000 computations of U(c, h) + sV (a',H,z’) and
finding 5,000,000 times the maximum for one update of V!

Wellschmied (UC3M) Basic Numerical Concepts 7/107

Two Controls

Wellschmied (UC3M) Basic Numerical Concepts 8/107

o Consider a problem with one state variable (size N1) and two controls
(sizes N1 and N2).

@ We could construct two grids, one for each control.

@ For each iteration of the value function we need to solve VN1,
N1 X N2 possible choices.

@ Sometimes, first-order conditions suggest something simpler.

Wellschmied (UC3M) Basic Numerical Concepts 9/107

Two Controls

Neo-classical growth model with labor /:

_o\1™
V(k,z) = Tﬁﬁ{ <C9(1 II)IT 0> + BEv(k’,z’)}

c+k =zk* I 4+ (1 -6k
In(Z') = pln(z) + €

Find ¢c(k, z), ¢i(k,z). The first order conditions imply:

c 0 a|—o

Wellschmied (UC3M) Basic Numerical Concepts

Two Controls

Neo-classical growth model with labor /:

_o\1™
V(k,z) = Tﬁﬁ{ <C9(1 II)IT 0> + BEv(k’,z’)}

c+k =zk* I 4+ (1 -6k
In(Z') = pln(z) + €

Find ¢c(k, z), ¢i(k,z). The first order conditions imply:

c 0 a|—o

Knowing optimal policy ¢.(k, z), this is a non-linear root finding problem
in /.

Wellschmied (UC3M) Basic Numerical Concepts

Two Controls Il

@ One way to solve the problem is:
1. Guess optimal policy for labor, ¢;(k, z).
2. Solve for optimal policy for consumption ¢ = ¢.(k, z).
3. Solve FOC for optimal ¢;(k, z).

4. lterate until convergence.

@ For step (3) we need a root-finding algorithm.

Wellschmied (UC3M) Basic Numerical Concepts 11 /107

Newton-Raphson Method for Root Finding

@ Newton method uses first order approximation to function.
@ First order approximation around guess xp:

f(x) = f(x0) + f'(x0)(x — x0).
@ Setting f(x) = 0 and solving for x gives new guess:

X' =x0— ;((Xx?)-

The tangent intersects the x-axis.

e This requires numerical differentiation (in one second)!

Wellschmied (UC3M) Basic Numerical Concepts 12 /107

Modified Newton-Raphson Method

v

@ When the objective function is close to flat around x°, the linear
approximation may lead to a poor prediction.

@ Function may not be defined at x’.
Reformulating the problem is often possible.

e The Modified Newton-Raphson Method updates slowly A € [0, 1]:

X' =0 = Afige).

Wellschmied (UC3M) Basic Numerical Concepts 13 /107

Multivariate case

The method can be extended straightforward to the multivariate case:

0=f(x1, ..., xp)
f(x)=0<
0= F"(x1,.ee, Xn)

Define the Jacobian:

fll f21 f‘31 fnl

)(a) = fffZ .. i (%)
A
fin f2n fén fnn

Wellschmied (UC3M) Basic Numerical Concepts 14 /107

Multivariate case ||

If J(x) is Libschitz (sufficient: continuous differentiable), then approximate
f(x) ~ f(xo) + J(x0)(x — x0),

with solution
X' = xo — A (x0) Hf(x0).

Wellschmied (UC3M) Basic Numerical Concepts 15 /107

Numerical Differentiation

For this algorithm, we need to compute

f(x+ h) —f(x)
p .

F(x) = li
b = jim,

@ Simplest method called one sided approximation:

f'(x) =~ w Slope error proportional to h

gt

T

Wellschmied (UC3M) Basic Numerical Concepts 16 /107

Numerical Differentiation Il

Flx) = h/mf(x + hf)) — f(x)

@ Two sided approximation:

f'(x) =~ % Slope error proportional to h?.

Wellschmied (UC3M) Basic Numerical Concepts 17 /107

Numerical Differentiation IlI

@ Five point method:

F(x) ~ —f(x+2h)+8f(x+/1)2778f(x—h)+f(x_2h).

Slope error proportional to h*.

Wellschmied (UC3M) Basic Numerical Concepts 18 /107

Alternatives to " Standard” VFI

Wellschmied (UC3M) i i 19/107

Methods Relying on FOCs

Wellschmied (UC3M) i i 20 /107

Projection Method

Consider the Neo-classical growth model without labor:

e = B{ B i (azeakit + (1-9))}
Ct + kt+1 = Ztk? + (1 — 5)kt
In(ze41) = pIn(zt) + €41

et1 ~ N(0,0%)

Rational expectation solution:

Ct = C(kt, Zt)
kt+1 = k(kt,zt)

Wellschmied (UC3M) Basic Numerical Concepts

Reformulating the Problem

c(ke,ze) 7 =]E{ﬁc (kex1,ze41) " (OéZt+1ktaJ:11 +(1- 5)) }
Substitute in the budget constraint:
c(ke, ze) ™7 —]E{ﬁc (2ek@ + (1 — 8)ke — c(ke, 2¢), ze11) "
(0zes1 (2ek + (1= ke — ke, 20))° 2 + (1= 9))} =0

Which is at each grid point k;, z; a root-finding problem in optimal
consumption.

Wellschmied (UC3M) Basic Numerical Concepts

|dea of Projection Methods

Idea, approximate policy function by a known function:

c(ke, zt) = Pp(ke, ze; vn).

Wellschmied (UC3M) Basic Numerical Concepts 23 /107

|dea of Projection Methods

Idea, approximate policy function by a known function:

c(ke, zt) = Pp(ke, ze; vn).

@ Usually, P, of polynomial class.

@ Euler equation needs to hold at each grid point /.

Wellschmied (UC3M) Basic Numerical Concepts

Projection Method I

Substituting c(k;, z;) ~ Pn(ki, zi; vn):
e(k,-,z,-; 1/,,) = Pn(kiyzi; I/n)f7 - E{ﬁpn(klazl; Vn)iw(azlk/ail + (1 - 5))}

Inserting budget constraint and law of motion:

e(k,-,z,-; Vn) = Pn(k,',Z,'; Vn)_’y_
]E{ﬂP,,(z,-kf‘ + (1= 8)ki — Pa(ki, zi; vn), exp(pIn(z;) + €); vn) ™7

[aexp(pin(z;) + ¢)(zik{* + (1 = 0)ki — Pa(ki, 23 vn))* ™ + (1 = 5)]}

Wellschmied (UC3M) Basic Numerical Concepts

Projection Method Il

Approximating integral by J Hermite Gaussian quadrature nodes:
e(k,-, Zj, Vn) = Pn(kia Zj, Vn)_’y_

J
Z [B%P,,(z;kf" + (1 —0)ki — Pn(ki, zi; vp), exp(pln(z;) + \@aéj); vp) 7

[aexp(pin(z;) + V20 (zik® + (1 — 8)ki — Palki, i1 va))* > + (1 — 5)]]

This can be solved for v, at each grid point to minimize e(k;, z;; vp).

Wellschmied (UC3M) Basic Numerical Concepts

Projection Method IV

@ We have to fix k;, z;.

Chebyshev nodes have good convergence properties.

@ We have to find the parameters v,.

Collacation (M = N): Use a function solver to solve for
e(ki, zi;vp) = 0 at all grid points.

Galerkin (M > N), minimize e(k;, zj; vp).
For example, Gauss-Newton algorithm.
o The latter requires to evaluate (X X)L,

Chebyshev polynomial avoids multicollinearity.

Wellschmied (UC3M) Basic Numerical Concepts

Function approximation

Assume you want to approximate g(x) by a known function f(x):

g(x) = f(x).

In our case: c(k,z) =~ Pp(k,z;vp).

Wellschmied (UC3M) Basic Numerical Concepts

Function approximation

Assume you want to approximate g(x) by a known function f(x):

g(x) ~ f(x).
In our case: c(k,z) =~ Pp(k,z;vp).
@ (One-dimensional) Polynomials:
f(x) = vo To(x) + v1 T1(x) + v2 Ta(X)... + v Th(x)
Weierstrass Theorem: A continuous, real valued function on a
bounded interval can be approximated arbitrary well by a
polynomial.

@ Splines are an alternative:

Piecewise polynomial functions.

Wellschmied (UC3M) Basic Numerical Concepts

Increasing Polynomial Order

Data
Order 1
16 Order 3
Order §
14
12+
105
8L
po
G
BT .
o
- *
4
" .
1 2 3 4 5] 7 8 9 10

f(x)=vp+ur1x+ Uox? + ...+ vpx".

Wellschmied (UC3M) Basic Numerical Concepts

Chebychev Polynomial

One important type has the basis function:

To(X) =1
Ti(x) = x
Tot1(x) = 2xTh(x) — Th_1(x)

g(x) =) yTi(x)
j=1

o Defined on the interval [—1, 1], but we can always transform a
continuous function.

If space S = [a, b] map into [-1,1] by 232 — 1.

Wellschmied (UC3M) Basic Numerical Concepts

Why Use Chebychev Polynomial?

@ Chebychev polynomials help avoid multicollinearity

f Ti(x) Tj(x)w(x)dx = 0.

@ This is helpful when evaluating (Y/Y)*l.

Wellschmied (UC3M) Basic Numerical Concepts

Chebyshev Nodes

In projection methods, we usually create the grid using Chebychev nodes.
n Chebychev nodes are the roots to the nt” Chebyshev basis function:

Th(x)=0
For example, to create n = 3 Chebychev nodes:

T3(x) =4x3 —3x =0

x=[-V3/4 0 \/3/4).

Wellschmied (UC3M) Basic Numerical Concepts 31/107

Why Use Chebyshev Nodes?

Chebyshev nodes can also be useful outside projection methods. In
structural modeling, we are often free to choose nodes at which to
approximate:

V(a)~ f(a) Vae A

A could be a linear grid of length n in [a,3]. It can also be the n"
Chebyshev nodes in [a, 3a].

Chebychev nodes have desirable convergence properties given an initial
coefficient guess /9!

Wellschmied (UC3M) Basic Numerical Concepts 32 /107

Numerical Integration

We need to know Ec(ksy1, pln(z;) + €)™, where € ~ N(u,c2). Generally,
in economics, we often need to calculate:

/ab f(x)dx

@ An integral is an infinite object.

@ We need to calculate a finite approximation.

Wellschmied (UC3M) Basic Numerical Concepts 33/107

Numerical Integration I

Numerical integration replaces the integral by a finite sum:
b J
/ Fdx ~ S wif ()
a j=1

@ ¢; is the node j at which we evaluate the function.
@ wj is the weight for node j.

@ This gives 2J free parameters.

Wellschmied (UC3M) Basic Numerical Concepts 34 /107

Gauss-Legendre

Let us start with the following problem:

1 J

IRCENE

-1 e

Idea: Choose §;, w; such that approximation is accurate for functions

that can be approximate by polynomials of degree 2J — 1.

1 J
/ Xdx=> wigf, i=0,1,..2J-1.

1 =
@ Yields 2J equations in 2J unknowns.

@ Note, the choices of £ and w do not depend on f! Only the
evaluations f(¢;) do.

Wellschmied (UC3M) Basic Numerical Concepts 35/107

Now assume a function g(x) can be approximated by polynomial, and we
can write

f(x) = g(x)W(x)

. 2 .. .
Gauss-Hermite uses W(x) = e and domain is the real line:

m . 2 J .
/ xe™dx =Y wigl, i=0,1,..2J-1.

— 0 =

So we approximate:

. J
/ g(x)e ™ dx ~ Y wig(§):

— 00 =

Wellschmied (UC3M) Basic Numerical Concepts 36 /107

Expectations of a Normally Distributed Variable

We want to compute E(g(x)), where x ~ N(u, o?):

m(a() = [B (- b1 o

oo OV 2T

Define auxiliary variable y = (i(;T‘:) with x = h(y) = 20y + uu. Now use

integration by substitution:

b h=1(b)
/ g(x)dx = / g(h(y))H (y)dy with x = h(y).
a h—1(a)

Wellschmied (UC3M) Basic Numerical Concepts 37 /107

Expectations of a Normally Distributed Variable Il

Ble) = [£ Lexp(- &) g

27
/_Oog(x:;yju) ()\fdy
e e OO

So, we have:

J .
E(g(x) ~ Y %g(ﬁafj + 1)

j=t

Wellschmied (UC3M) Basic Numerical Concepts 38 /107

Gauss-Newton Method

We need to find coefficients v, to minimize e(k;, z;;). One possible
algorithm is the Gauss-Newton method which uses an approximation to
the SSR norm. Consider the general formulation where we have outcomes,
yi, (LHS of Euler equation) and a function mapping points, x;, (our grid)
into outcomes (RHS of Euler equation). Thus,

N
min{3 (v — £ 1)}
i=1

!
y=1 ..
Tp
We want to minimize the sum of squared residual r; = y; — f(x;,7).

Wellschmied (UC3M) Basic Numerical Concepts 39 /107

Gauss-Newton Method Il

Consider the simpler first order approximation around ~s:
r(Xi7 7) ~ r(Xi7 ’75) + [Vr(x,-, ’Vs)]/('}’ - ’YS)

m/n{z — [Vr(xi,79)] (s — 7))}

Where Vr(x;j,s) is the derivative of the residual with respect to 7;, a
N X p matrix.

Wellschmied (UC3M) Basic Numerical Concepts

Gauss-Newton Method llI

o Lety=(ys—7)

@ The problem has the solution:
7 = (Vr(xi,7s) Vr(xi,75)) 1V (%, 95) r(xi,7s).

o It follows that the next guess is ys+1 = Vs — 7.

@ The algorithm requires Vr(x;,7s)
Sometimes (polynomials) known analytically, use it!

Otherwise, use numerical differentiation.

Wellschmied (UC3M) Basic Numerical Concepts 41/107

Extensions

@ Several extensions exist which deal with:
Exploiting second derivatives (Hessian).
Non-smooth functions (simplex methods).

Constrained non-linear programming.

Wellschmied (UC3M) Basic Numerical Concepts 42 /107

A Simpler Approach

Alternatively, we can also iterate on ~ until convergence:
@ Construct a grid X.

@ We will approximate u'(c(X)) but we could just as well approximate
c(X).

© Guess an initial vp.

@ Compute the right-hand side, RHS, of the Euler equation given ~p.
© The FOC requires that v'(c;) = RHS.

@ Given as norm SSR, the optimal ~ satisfies (X'X)~1X'RHS.

@ Check for convergence and update 79 = Ay + (1 — \)7.

Wellschmied (UC3M) Basic Numerical Concepts 43 /107

Global vs. Local Solutions

ER R S S S

@ Minimizers are usually designed to find a local minimum.

@ So called genetic algorithms aim at finding the global minimum:

Find a local minimum, try other starting values and
recompute local minimum.

Pattern search, simulated annealing.

Wellschmied (UC3M) Basic Numerical Concepts 44 /107

PM with Multiple States

o We need to approximate F(X): [-1,1]F — R.
@ Polynomial function for L state variables (z, k in our case).

@ We can use the Tensor product of Chebyshev polynomials:
Pr(Xivn) =310 -+ 2ol—o Vit Trn(xa) 5 % Ty(xe)
If basis is orthogonal in a norm, tensor product is orthogonal in

the product norm.

@ Number of grid points growth exponentially in number of dimensions.

Smolyak’s algorithm: Number of grid points growth
polynomially in number of dimensions.

Wellschmied (UC3M) Basic Numerical Concepts 45 /107

Smolyak's Algorithm

Sparse grid methods reduce computational burden.

@ Idea is to choose those grid points from the Tensor grid that are
important.

@ In practice, Smolyak’s algorithm has been found useful.

@ Judd et al. (2014) provide a comprehensive discussion.

Wellschmied (UC3M) Basic Numerical Concepts 46 /107

The Idea in two Dimensions

@ The algorithm relies on nested sets of points: S; C Sj11 Vi.
@ The extrema of the Chebychev-polynomialal is one class of these sets.

@ Suppose we use il = /2 = 3 for our d = 2 dimensions. This yields a
5 X 5 tensor grid.

@ Smolyak’s rule is to select only those points from the sets for which
d<il+i2<d+pu.

@ 4 is an accuracy parameter.

Wellschmied (UC3M) Basic Numerical Concepts 47 /107

The Idea in two Dimensions

pu=0 =1 w=2 n=3 x5
1 1 1 1 T 1
. . P
0 . 0 . 04+ . . Ohs s o604 o} . .
.
. . . s s
-1 -1 1 1 + -
1 0 11 L] 1 4 0 1 1 0 1 -1 0 1
Smolyak Smolyak Smolyak Smolyak Tensor Product

Fig 1. Smalyak grids versus a tensor-product grid

We need to interpolate our multidimensional function on this sparse grid.
See Judd et al. (2014) for a discussion.

Wellschmied (UC3M) Basic Numerical Concepts 48 /107

Algorithm for PM

@ Guess coefficients of P,(X;vp).

@ For each state, compute today's decisions.

© Using the budget constrained, compute the implied states tomorrow.
Q Use P,(X;vy,) to compute tomorrow's decisions (RHS of Euler eq.).
@ Compute implied today's consumption decisions, y = RHS /7.

@ Compute implied coefficients by (X' X)1X'y.

@ Check convergence of coefficients and update.

Wellschmied (UC3M) Basic Numerical Concepts 49 /107

Algorithm for PM I

© The previous algorithm is called fixed-point algorithm.

@ Uses current guess of P,(X;vy) to compute LHS and RHS of FOC.
© Convenient because no solver needed. But convergence is tricky.

@ Alternatively, use time-iteration algorithm.

@ Use P,(X;v,) to compute tomorrow's policies.

@ Solve for optimal policy today to solve FOCs (a non-linear problem),
y = RHS=1/7.

@ Compute implied coefficients by (X' X)~17.

Wellschmied (UC3M) Basic Numerical Concepts

Methods not Relying on FOCs

Wellschmied (UC3M) i i 51/107

Projection Methods

Projection methods can also deal with borrowing constraints. Consider the
Aiyagary economy:

V(a.0) = max{U(c) + BEV(d.¢)]

ct+ad =e+a(l+r)
a>a

T = Jle =)

With solution

‘ e+a(l+r)—a otherwise.

Wellschmied (UC3M) Basic Numerical Concepts

Algorithm

O Guess coefficients of C(X) = Pp(X; vp).

@ For each state, compute today's decisions.

@ If a1 < areplace cip =e+a(l+r) — a.

Q Use P,(X;v,) to compute tomorrow's decisions (RHS of Euler eq.).
@ Compute implied today’s consumption decisions, y = RHS~1/7.

Q If arp1 < areplace cip = e+ a(l+r) — a.

@ Compute implied coefficients by (Y’Y)_l)'/.

© Check convergence of coefficients and update:
Wellschmied (UC3M) Basic Numerical Concepts 53 /107

Off-Grid Choices

@ Define a grid, g,, for your dynamic state with N points.
@ Define a second grid, g, for possible choices with M > N points.

© Some points of g, are not part of g,. Interpolation needed:
If we know V/(x1) and V(x2), what is V(xp) with x; < xp < xo.

Usually we use splines for this.

@ Super quick: interpolation base points and interpolation weights stay
constant.

Wellschmied (UC3M) Basic Numerical Concepts 54 /107

Spline Approximation |

Before considering the specific issue of interpolation, consider general idea

of splines. Think of spline approximation as again replacing an unknown
function f(x) by a know function g(x).

@ Polynomials assume g(x) ~ f(x) Vx € [x,X].
@ Splines fit polynomials for different regions of [x,X]: [x1, x2],[x2, x3], ...
By using N — 1 splines, we assure f(x;) = g(x;)-

4

Wellschmied (UC3M) Basic Numerical Concepts

55 /107

Spline Approximation I

@ This local approach assures that a change in x >> x; does little to

f(xi)-
d 1k
/\ d X
4 ViR L J A
: ¢ A
| X Vs i
l [\ Al
| » / ik//
| 2% 1\ K
: ; [< 3
X X

Wellschmied (UC3M) Basic Numerical Concepts 56 /107

Different Splines

Simplest is a polynomial of order one which is called piecewise linear spline.
For x € [x;, xj+1]:
f X —f X
f(x) = f(xi) + (x — x,-)M.

Xi+1 — Xi

Wellschmied (UC3M) Basic Numerical Concepts 57 /107

Different Splines Il

The function is non-differentiable at the nodes. To avoid this, use cubic
splines:

f(X) = a; + bjx + C,'X2 + d,'X3.

@ With n-segments, 4n unknowns.

Wellschmied (UC3M) Basic Numerical Concepts 58 /107

Different Splines Il

The function is non-differentiable at the nodes. To avoid this, use cubic
splines:

f(X) = a; + bjx + C,'X2 + d,'X3.

@ With n-segments, 4n unknowns.
o f(x;) = g(x) Vx;.
@ assure differentiability.

assure 2nd derivative.

2 free parameters left.

Wellschmied (UC3M) Basic Numerical Concepts 58 /107

Interpolation

@ Spline approximation gives us function defined on R. Interpolation
requires only specific points.

@ One dimension:
| know V/(x1) and V(x2).
| want to know V/(xp) where x; < xp < x.

Use a function V(xg) ~ f(x1, x2, x0, V(x1), V(x2))
@ V/(x) needs to be continuous and monotone between grid points.
@ ldea easily extended to n-dimensions:

Denote by X§ = [x3, ..., x§].

V(Xg) = (X, X3, X, V(XD), V(XF))

Wellschmied (UC3M) Basic Numerical Concepts 59 /107

Linear Interpolation

@ Simplest function is linear interpolation:

One dimension: V(xp) = V(x1) + %(Xg —x1)

@ The resulting linear spline approximation is not differentiable.

@ Linear interpolation, by far the fastest!

Wellschmied (UC3M) Basic Numerical Concepts

Bilinear Interpolation
;vx’j() ’(L,’(J

. o l
\

: ‘
(X4 Y4) (X, ¥,)

] _ 1
Define d = Ga—x1)(va—y1)

V(x0, y0) = d[V(x1,y1)(x2 — x0)(y2 — y0) + V(x2,y1)(x0 — x1)(¥2 — ¥0)
+ V(x1,y2)(x2 — x0) (Yo — y1) + V(x2, y2)(x0 — x1) (Yo — y1)]

Wellschmied (UC3M) Basic Numerical Concepts 61 /107

Spline Interpolation

@ When function is non-linear, more accurate functions available.

@ As seen, cubic splines (Cubic Hermite Splines) assure first two
derivatives at V/(x1) and V(x2).

@ In theory, can be extended to higher order derivatives.

Wellschmied (UC3M) Basic Numerical Concepts 62 /107

Tsao and Tsitsiklis (1991) Multigrid

@ Solve the model on a curse grid, yielding V°.

@ Increase number of grid points in each dimension by factor 2.

@ Obtain initial guess of value function by interpolating using V°.

@ Decrease critical value by factor of 2.

@ Perform value function iteration to obtain VI

O Repeat until desired grid size.

Wellschmied (UC3M) Basic Numerical Concepts

63 /107

Golden Section Search

Consider again a simple household problem:

V(a, z) = r?jg{U(c) +BEV(4, z’)}

c+a =z+a(l+r)
x<ad <x

e We know W(a,d',z) = U(d') + BE,V(d,Z') is concave.

@ Find the maximum over a concave function in interval [x’, x/].

Wellschmied (UC3M) Basic Numerical Concepts 64 /107

Golden Section Search

A W(e, o)

o
p‘

O X|

@ We know a"* is between [A, D].

@ Assume we evaluate W(a, B) and W(a, C)
W(a, B) > W(a, C) so a™* € [A, C].
Otherwise, a™* € [B, D].

Only one new function evaluation.

Wellschmied (UC3M) Basic Numerical Concepts 65 /107

Golden Section Search Il

@ How to choose B, C?
@ Find the maximum with minimum function evaluations.

Choose intervals to have same length: AC = BD.

°
. . AC _ AIG
° Cpi=L= = .
Assure that: p A0 = AD:

p= Y31~ 0.618

Wellschmied (UC3M) Basic Numerical Concepts 66 /107

Golden Section Search Algorithm

Q@ Set A= x, D =Xx. Compute:
B=pA+(1—-p)D, C=(1-p)A+pD.

Q@ If W(a,B) > W(a, C), replace D by C and C by B. Compute:
B =pA+(1-p)D.

@ Iterate until |A — D| < crit.

B, C may be off grid points. Interpolation needed!

Wellschmied (UC3M) Basic Numerical Concepts 67 /107

Endogenous Grid Points (EGM)

Consider the Aiyagari economy, where households face an exogenous
borrowing constraint

V(a,e) = rgjf({U(c) + BEV(4, e')}

ct+ad =e+a(l+r)
ad>a

mik(€' = dle =€)

Wellschmied (UC3M) Basic Numerical Concepts 68 /107

Endogenous Grid Points [l

The first order condition implies

U'(c(ar,e0)) = (L+1)B) mlersiler)U'(e(art1, eet1))

IVE

[
||
-

U'(c(at,er)) — (L+1r)B Y m(ersrler) U (e(ar + er — c(ar, €r), €441)) = 0

E

j=1
@ This is (again) a root finding problem in optimal policy c(a,).

e Carroll (2006) insight: If we knew c(aty1,€r+1), simply a linear
equation.

—1/v
Eg. c= (A + N8y m(emle)c(a en))

Wellschmied (UC3M) Basic Numerical Concepts 69 /107

Endogenous Grid Points Algorithm

© Construct a grid of assets today, a € A, and tomorrow a € A with
a; = a.

@ Guess the policy function c(a,¢).
@ Solve B(a,e) = (1+r)BY L, w(¢le)U'(c(a, €)).

@ Solve for implied consumption today c(3,¢) = B(a,¢) /7.

Wellschmied (UC3M) Basic Numerical Concepts

Endogenous Grid Points Algorithm

© Construct a grid of assets today, a € A, and tomorrow a € A with
a; = a.

@ Guess the policy function c(a,¢).
@ Solve B(a,e) = (1+r)BY L, w(¢le)U'(c(a, €)).

@ Solve for implied consumption today c(3,¢) = B(a,¢) /7.

ct+a—e
1+r -

© From budget constraint: § =

Wellschmied (UC3M) Basic Numerical Concepts

Endogenous Grid Points Algorithm

© Construct a grid of assets today, a € A, and tomorrow a € A with
a; = a.

@ Guess the policy function c(a,¢).
@ Solve B(a,e) = (1+r)BY L, w(¢le)U'(c(a, €)).
@ Solve for implied consumption today c(3,¢) = B(a,¢) /7.

4. 5 _ cta—e
© From budget constraint: & = <27

Q@ Fora<i(l):c=e+a(l+r)—a

Wellschmied (UC3M) Basic Numerical Concepts

Endogenous Grid Points Algorithm

© Construct a grid of assets today, a € A, and tomorrow a € A with
a; = a.

Guess the policy function c(a, €).
Solve B(a,€e) = (1+ r)B Y1, m(€le)U'(c(a, €')).

Solve for implied consumption today c(4,¢) = B(a,¢)~1/7.

ct+a—e

From budget constraint: & = <.

Fora<i(l): c=e+a(l+r)—a.

Interpolate c(a, €) on c(&,¢€).

© ©¢ 6 06 6 o0 ©o

Replace initial guess and iterate until convergence.

Wellschmied (UC3M) Basic Numerical Concepts

Endogenous Grid Points Value Function

@ Sometimes, we are not only interested in the policy, but also the value
function.

@ We can use the insight of EGM, to iterate on the value function.

dV(a,e) _ 9U(c) 9c +68EV(a’,e’) _o
0a Jc 04 0’ B
OEV(d,¢€)
U'(c) = 5T

Wellschmied (UC3M) Basic Numerical Concepts 71 /107

Endogenous Grid Points Value Function Il

@ Construct a grid of assets today, a € A, and tomorrow a € A.

@ Guess the expected value function tomorrow

V(a,e) = BN, n(e]e)V(a,€).
Solve B(a,€) = Vias),

Oa
Solve for implied consumption today c(3,€) = B(a, e)~ /7.
thte 5 cta—e
From budget constraint: & = < 7-=.

Fora<a(l): c=e+a(l+r)—a

Interpolate c(a, €) on c(&,¢).

From budget constraint: a'(a,e) = (1 + r)a— c(a,¢) +e.
Obtain V(&,€) by interpolating on V/(a,).

® 0 © 00 0 O0 O

Update value function: V(a,e) = U(c) + V(a', ¢).

Wellschmied (UC3M) Basic Numerical Concepts 72 /107

Endogenous Grid Points, Two Choices

Barillas and Fernandez-Villaverde (2007) study problem similar to:

A1 — Ni-0 1=
V(a,z)—max{(¢) +5EV(3/72/)}

c,a,l 1—7
Z = Pz + ¢
a+c=(1+r)a+lexp(2)
a>0

Wellschmied (UC3M) Basic Numerical Concepts 73 /107

Endogenous Grid Points, Two Choices Il

First order condition for asset next period:

(Ce(l - /)1_6)177 _ 68]143{ v(d,z)}

=V
c 0a’

0

This can be solved for consumption today:

o — [\7 9(1—17)—1
t= (1 — ,t)(1_9)(1_f)

Thus, as before, knowing V (and /;) yields a solution for consumption
today.

Wellschmied (UC3M) Basic Numerical Concepts 74 /107

Endogenous Grid Points, Two Choices IlI

First order condition for labor implies:

1-6 Ct —
6 1—1 °F

Knowing consumption, we can solve for labor.

Wellschmied (UC3M) Basic Numerical Concepts

Endogenous Grid Points, Two Choices Algorithm

@ Guess optimal policy for labor: ¢(a, z).
@ Solve the EGM algorithm for ¢(a, z).
@ Solve for ¢(a, z) and update policy.

@ lterate until convergence.

Wellschmied (UC3M) Basic Numerical Concepts 76 /107

Vectorizing Your Code

Consider again a simple household problem:

V(a,e) = ma/x{U(c) +BEV(, el)}
c,a
ct+ad =e+a(l+r)
a>a
mik(€' = dle =€)

Take an asset grid of 5000 points and a productivity grid of 3 points the
problem takes:

@ 147 seconds to solve on an 7 — 10700 2.9 GH processor when written
with loops.

@ , for reasons explained below, 25 seconds when fully vectorized.

Wellschmied (UC3M) Basic Numerical Concepts 77 /107

Parallelizing Your Code

@ Many loop operations can be done simultaneously, instead of
sequentially:

Solve value function at each grid point.

Simulate a Markov process.

@ There are two broad types of parallizations:
Computer has several cores (local).

Server has several computers (cluster).

Wellschmied (UC3M) Basic Numerical Concepts 78 /107

Matlab Parallelizing

Using several cores: Using a cluster:

parpool('local’,6) parpool('Name',22, 'AttachedFiles’,

parfor i =1:10 {'"VFI.m" '"FOC.m'})

f(i) = VFI(i); parfor i =1:10

end F(i) = VFI();

poolobj = gcp('nocreate’); end

delete(poolobyj); poolobj = gcp('nocreate’);
delete(poolobyj);

Wellschmied (UC3M) Basic Numerical Concepts 79 /107

Efficiency of Parallelizing

The speed gain is significantly below 1/N:

@ It can be even considerably slower than non-paralization.

@ As memory needs to be passed to each worker at the same time, you
may run into memory issues.

Parallization creates overhead communication between Matlab and
the different cores.

@ Often, the efficiency loss is smallest when every single computation
takes time.

Because how things are organized on the RAM, it can matter over
which dimension you loop.

@ My computer has 8 cores. Using 6, computation time drops from 147
seconds to 69 seconds.

Wellschmied (UC3M) Basic Numerical Concepts 80 /107

Going beyond Matlab

Wellschmied (UC3M) i i 81 /107

Interpreted Languages

Matlab is what is called an interpreted language:
e What does B = sum(A) mean in Matlab?

Reads the expression.
Checks what A is (one or more dimensions?)
Check, what sum() does for this type of argument.

Check if B exists or if it needs to be created.

@ This is why loops are slow in Matlab.

Wellschmied (UC3M) Basic Numerical Concepts 82 /107

Compiled Languages

This is different from compiled languages. Two famous exaples are
Fortran and C++:

e What does B = sum(A) mean in Fortran?
@ At execution time, the compiler has translated this statement into
machine code.
It has determined what A is.
It has made sure, A is a data type that sum() can be applied to.

It has made sure that B has been declared and can contain the
result of sum(A).

The computer than just executes instruction by instruction.

Wellschmied (UC3M) Basic Numerical Concepts 83 /107

Compiled Code in Matlab

@ Some Matlab functions are compiled code.

@ Matlab provides possibility to include your own compiled code as
.mex functions.

Either C++ or Fortran.

Unfortunately the documentation is poor.

@ This provides the opportunity to outsource computational expensive
routines.

@ While keeping the advantages of Matlab.

@ Debugging is tedious.

Wellschmied (UC3M) Basic Numerical Concepts 84 /107

Compiled Code in Matlab Il

@ Here, | show you how to use Windows Visual Studio together with an
Intel compiler.

@ There are also free of charge compilers (Windows Visual Studio
Community is free of charge).

@ Linux systems (Ubuntu) have compilers already installed

Our cluster runs on Ubuntul!

Wellschmied (UC3M) Basic Numerical Concepts 85 /107

Visual Studio |

o) staepge- oo Vil s
Fe G Vew Pojet Debug Teom Took Tt A

Windew Help

» avach. | 51

Sol@-t o

eckout coing

a

Discover Visual Studio Community 2015

and sarpleprojects
it

~ [Sousion Explorer

etiningonnew i
2 New Bt

+ Recent
st

Resdyto Cloudpon| 4 Templetes
+ Vs G5

Connect to A

NET Famenork 452 Sortby: Defaut %

;

Recent

ousehold smart mex
ehold

simulation mex

valfun_exog con mesx

vl fun_exog mex

valfun_ 2. exog, mex

Keep poge open e prject o
¢ Showpsgeenstatup

Wellschmied (

Il Vs Foran

st Lbray
s sener
4 el Vs Forrn
ConsleApplication

News

Quicki on
Vindouing Appication
coms:
[
+ Bythen
+ st
Game
Buid Acelrtor
+ Otnerproject pes
mgles
+ Onine
Name: on
Location: Fforan, .
Soutionname DI o] reme vty forsuion

] Addto Source Conto

sic Numerical Concepts

Conce

Visual Studio Il

50 sl e - Moo VoSt
Fle G Vev o Bud Deg Tem Toos Tt Awine

Window tielp

0[8-S B9 e - e - b son-| 5

| TR
6 (G0 scope)
Sinclue “Fintrr

pins(e), ornscs)

seions
aucrestenmerlcieray miGetsr, e, meth

Wellschmied (

3M)

~|s_ mesFuncioniin, v, s, o)

¢

B ek Lo -2

- [Soution Expors

VA

B mosueder

Solstion Explorer |28

Plam
Sgnin
<

Visual Studio Il

04 ool mes - Mool VoS
Fe Gk Vew Dot Bad Deg Tom Tods T A Wndow b
8|9 - € < e -0t | som- |

Noukehold mexF0 = X
Bl G (Giobaiscove)

= et (oens(5))

PINSC) = miCreatatumricarray(nate, alss, classis, complextiag)
¥ - msesar(p1s (1))

11 s va1_fon (L) W1 (), 1 (1) M cons), B P, W ()

Ssstroutin sus sl o, P, ete)

Lreager(a), tntenc(in) sz
resi(), ntent(in) =
Fesl(8), sinension(rs,), i B

reai(®), sisension(oa,naz),

resi(®), stnension(ra,na), intert(out) v

Wellschmied

~[s_meFunciontin,pins, s, pi)

sic Numerical Concepts

& QuickLoonen e SN

n Eplorer

Visual Studio IV

D4 household_mex - Microsoft Visual Studio

Fle Edt View Project Buld Debug Teom Took Tet Anabze Window Help

©-0|B-L M| DT - Raesse - x4

moduieder [FRRP—TI—

G (Global Scope)
ine Further variables £3

integer(@) 5,825

resl(s), imension(ne) [

resl(s), simension(na,nz)

)

<] s sub_valfuntV, na,r, cons, P, beta)

i, _prob_cun

Sub_mextéritestring("head works')
Lization

10
(L i2) = 0.00

H(3) = Tog(cons (12,3,41)+8V(3, 1)
end do
Vnew(i2,i1) = maxval(0)
@ o

Wellschmied (

sic Numerical Concepts

Visual Studio V

500 houhod s - Micosot Vi S ¥ Pasimrca A28
fle G Vew Prowi o Oeg Tm Tk Tet Amv Widm He Ein
0-0lR-LE | Reense - xat b s A n i
Ell moduieder © x o ~ e -y
e e + 555
2 ooos rexcrion & I
H e £
[m———p—
B ounchld mex
B mediede
[
a2
o
= =

sic Numerical Concepts

Wellschmied (

Visual Studio VI

Fle Edt View Pujst Bild Deshig Tam Took Tet Amae Window Hep
0-olfB -2l S [rucse [[s5t b sunc|

" - e)
Cons = rogetze(orns(4))
? < et (oens(s))

et = roet (prns ()

pins(a) = mCrestenmenicarray(nata, alas, ciassid, comie

Ppp——

©)mar(seta)

Sin_LaL_fun(Sea1 (V) e (1), S

Ssunroutine su0 VAL Fn(Y,8,02cons .06

integer(a), intent(in)
real(s), reent(s oeta
sreenc(in) 3
) intent(in) cons
reent(o) v

integerce) : 123
5), alosnston(na) I
oupit

P p— = =l

Wellschmied

mesFunction(uv,pivs, s, i)

eusehold mes ropery

Confguration | Actvet

4 Contgustion Propeies

o

Pger

Reesse | Piatom; |Acteses) | [Contiguraton Mnsger

SuppressSatupBamner Yes Unaogo)

Deboglnfematon Format Nons
imicstion MoimizeSpeed
PreprocesorDeintiors MATUAS WX FLE
Compile Time Disgnostic Cusom
Muliprocsssor Complton No

= =
Supprese thedislay of th starup banne. ologe)

obuechen | [JOBSAR

sic Numerical Concepts

P
Sgnin
Schsion xplore -~y
@50 p=
 Solton xplorer (Cu; £

7 Souion‘noussnold mes (1 prjec)
“m

B moddedd

N

Visual Studio VII

50 ol mes - Vit Vel .

& vk aunch ey Ao =
Fle Gt View Pojet Buld Debuy Tom Took Ten Awbae Window Hep Sonin |
83+ 20 WA | 9 - - Reese < st - b smec| A A
coe et [T - Souion Ecpore &
6 (Giobolscope) L5 mecFuncteioh, o, s, o) g &) 0-% 8| =
peraseter potaters £ serch soison spires (- »
) Sotaion househoidmec (1 prjec)
L houschold mex
- HegerFies
7 - (o - Recuceie
et mtororate) 4 & Souce s
B househod mec0
Creste marices for retun srgments ok
Pihs(1) = mCresteimerichrroy(nsin sins, clossis, complexéloe)
househald_mesPropeyPages 7 x
retpr(pina(1))
Configuaton: [ActveRders)) <] [Conigurtion o
[Contgurion ropaies] | PrprocasSoeeari Ve Ut
TR e im0 o, o ors) mk)) Addtonancude Directores CAProgram Fe\WATLABZ0208\externlincucde:
Ao OupstoNUDE o e
lgnore Stanrdncude ath
Defaut nclude and Use Pt p—
Pep— Preprocessr Ocfnions MATLAB MEX FILE

Subroutine sus Vel fn(V, a0 cons B,)

p—
res(e), interc(in) oets Flstng Pint Proper =
ek, etmrstoto), tnetot i e
—

Fobescon | [JOBSH v

Ouput

Wellschmied (

asic Numerical Concepts

Visual Studio 11X

] QuickLaunch Ctie

Mictosft Vi tudi
Sousion Expore

o) bl
fie Gt Ven Pt Bud Doy Tam Teos Toi Ambne Vindow Hep
|l reme |l - s =
~|s_mexFunctiontnihs, pihs, nrhs, prhs) = @ o-58 F=
R cs———rp—"
5 s
e
e e
4 @ Sl
& neweotn
Create matrices for return argunes L
(1) = mresttumerchery o, din, clseid, complntiog)
[T —— T ox
pae——
Conipentiors BB <] Pt [Reiete l =
et A B0, (1), (02, e i) p
ocbuin StingLength e Pt Al rguren
retrn + Fonn Sopend Undescae 10 S sams o
e Gt
ot araion Optmasion
oesigang
Pprocatr
CoteGenron
arotine s, o 0t8)
X s
it rene Compriey
Dugnosics Soction i
esgecey, onentin) e e
e, e o
(e, dimesiontre), tertin) >
6 inenion(rine) e z
O e
(), ctserstonre,), (o) v usne
Commmitn | |Gl Gt
< urter ari N3 v Ao,
et was s 7| | lieiciadhadcaRodianty
(e, atsrstonre)]
b et Y . Twrar) &

sic Numerical Concepts

Wellschmied

Visual Studio IX

1 Cuick e C1-Q Pl s

Tom Took Tt A Windw Hep Sgnin |

Rlease - <64 B

Sotion xposr

~['s_mexFuncton(ihs, v, e, prh) g Q-5 a|p=-

Sesen Slution Explre:

51 Solution householdmes (1 poject
4 househokdmex.

)
beta = miGetar (prhs(6)) ‘

household mex 50
module et

surst)

mcreatesmericarray(nat, ot classis, complextias)

HouseholdmecProperty Pages T %

Vet (sine()
Configurtion: | Actwelfcense) | pattorm: | Actwelxst | | Contiguration Marager.

n sunction Compriy A| | Oupathie SOWDin houscholdmexmenws
AR (REL(V) S181(0), $131(42) 181 (2005 S181(P), 131 (5253)) Disgnesics Showprogres
o FestngPont. Enabl nrementl Linking Dt
Exteral Procedures Suppres Sarup Banner Yes (4010601
ena suprou Oupuri gnoreimpan Lbrary
Rurtime Regier Output No
o Per-uss Rediection I

Sseroutine s00_vaL_funt, .1, con, P, =
= LinkibroyDependencies e
it rone B Adions Ogionsfor MIC Offcd Linker
integer(e), tntene(in) Meniest e
e =4 Debugging
), Sneentcin i Foes
i), intent(in) 2 cons g
pimiztion
), toeent(out) v Embedded 0L
Advnced
rmandine

s OutputFle
oy Ouerid the defaut output e mame. (OUTIle)

) -

Wellschmied (asic Numerical Concepts

Visual Studio X

0 householdmes - Moo Vil S
e el e e W W e el
00|18 M| - -[[Roeme -]t b s A

PRS- miCrestalumrichrray(nata, oins, classid, comlextiag)

V= e ane(t))

" CAIL stV fun (1AL, 5431 (13) a1 (12,431 cons), 021 7) ia oeta))

< sbrautine s url_fun(V, o, cons £, 0e)

| meFunctioini, i, e, b

T x

ousshold_mes Propety Pages
Conmatos (R

Comptiiy A
Disgnesics
oae

FlostingPoit.
Bl Procere)
Fles

< Pl Acetitt)
adiionn Dependencer

gnore A1 Dt Lirres
anore Specinc Libary

OeleyLosdea DLe

< | Configurton Mager

module.det

r(a), cent(in)
Fent(e), ineene(in) = Oetu
FeRI(8) dinersion(re,ne), intent(in) v ere
FeaL(®), sinension(re,na,n), inceneCin

g (onaro), 4 primiion
resi(@), stsension(ra,na), insercion) v -

CommandLine Adincas Dependacies .
imegere) s « i >
real(®), irension(ra) u
| B o v g

Sotation Eplore

@lo-5

| p-

Sesen Solaton Explre

Wellschmied (

asic Numerical Concepts

- oo
o Reurce
4 & sour

o

r

1 Solution heuseholdmes (1 pojct
4 hounehokdme.

e me 0

Mex-file Computation Time

@ Solving the household problem with a mex-file takes 27 seconds.

@ Much faster than the 147 seconds in Matlab.

It is still slower than the 25 seconds from the fully vectorized version
in Matlab. The reason is communication cost.

However, full vectorization is often not feasible:
e Monte Carlo simulations.
o Large state spaces imply huge matrices stretching the RAM. A
10000X10000 matrix is already 3.9 GB with double precision and 2.6
with single precision.

Non-paralized code is easier to read.

@ Non-paralized code can save on non-necessary computations.

Wellschmied (UC3M) Basic Numerical Concepts 96 /107

Saving on Non-Necessary Computations

In our problem, most computations are not necessary.

We know the policy function is monotone and the return function is
concave.

In Matlab a non-paralized smart code takes 0.16 seconds.

@ a mex-file takes 0.04 seconds.

These speed gains are extreme due to the regularity of the problem
but you often know (or suspect) something about your problem.

Wellschmied (UC3M) Basic Numerical Concepts 97 /107

From the CPU to the GPU

@ So far, we ask our computer to solve the problem on the computer
processing unit (CPU).

@ CPU’s are designed to solve complex problems.

@ It turns our, simpler problems can be more efficiently handled by the
graphical processing unit (GPU).

@ A GPU has a large amount of cores but only limited memory.

o | have a NVIDIA GeForce RTX 3060. This GPU has 3584 cores with
12GB RAM.

@ Hence, the GPU is only useful for tasks that can be paralized.

Wellschmied (UC3M) Basic Numerical Concepts 98 /107

From the CPU to the GPU

@ CUDA allows you to write your own programs based on C++ as .cu
files.

@ You can embed these in Matlab as .mex files (Matlab: mexcuda) or
.ptx files (Visual Studio).

This, however, requires some advanced programing knowledge.

@ The VFI-toolkit does it for you for a particular class of problems.

With my NVIDIA GeForce RTX 3060, the earlier problem takes 3
seconds (down from 147 with the CPU).

Wellschmied (UC3M) Basic Numerical Concepts 99 /107

https://www.vfitoolkit.com/

More on GPU Code

@ Only 1024 threads can access what is called “shared memory” posing
a limit to evaluate max(abs(Vnew — Vold)). Hence,
max(abs(Vnew — Vold)) needs to be evaluated on the Host. When
Matlab is the host, this produces overhead.

@ It must be possible to paralize the function. This implies, you cannot
exploit the monotonicity of the policy function.

@ In the present case, we can still exploit concavity of the value function.

Wellschmied (UC3M) Basic Numerical Concepts 100 /107

Summary of Speed

@ 147 seconds with for loops in Matlab.

69 seconds with parfor loop and 6 workers in Matlab.

25 seconds with vectorization in Matlab.

@ 27 seconds with Fortan mex-file.

3 seconds with the VFI-toolkit (GPU).
@ 0.37 seconds with smart code on the GPU.

0.16 seconds with smart code in Matlab.

@ 0.04 seconds with smart code and a Fortan mex-file.
Wellschmied (UC3M) Basic Numerical Concepts 101 /107

More on GPU Programming and Overhead

@ When working with the GPU, passing information between the
“Host” and the “Device” creates overhead costs. Also Matlab creates
overhead costs.

@ Hence, you want to write the CUDA code as “complete” as possible.

@ To understand the role of overhead, the next slide shows speeds when
| decrease the asset grid size to 330 (but decrease the convergence
criteria). l.e., every function evaluation is more simple but we do
more.

Wellschmied (UC3M) Basic Numerical Concepts 102 /107

Summary of Speed with fewer Grid Points

@ 9.65 seconds with for loops in Matlab.
@ 9.82 seconds with parfor loop and 6 workers in Matlab.

2.14 seconds with vectorization in Matlab.

@ 1.82 seconds with Fortan mex-file.

2.01 seconds with the VFI-toolkit (GPU).
@ 0.17 seconds with smart code in Matlab.

0.03 seconds with smart code and a Fortan mex-file.

@ 0.001 seconds with smart code and “complete” code on the GPU.

@ There is a trade-off between paralization and overhead!

Wellschmied (UC3M) Basic Numerical Concepts 103 /107

Accuracy of Numerical
Approximation

Wellschmied (UC3M) i i 104 /107

Accuracy of Numerical Approximation

We would like to assess the accuracy of numerial solutions. One possibility
are normalized Euler equation errors:

u'(ct) = BERe1u' (cet1)
u'(ce)

In the Neo-classical growth model:

 (BE(aZes1(ke, 2)* 7 + 1 = 8)u (ce41)) M/

Ct

EE =

EE(kt, Zt) =1

@ The error is defined at each grid point k;, z;.

@ It has a natural interpretation:

If EE;j = 0.01, the agent makes a 1$ mistake for every 100$ spend.

Wellschmied (UC3M) Basic Numerical Concepts 105 /107

Dynamic Euler Equation Error

@ Euler equation error are a one period ahead error.

e But (small) errors may accumulate over time.
Simulate two time series with T periods:

@ Simulate the series using policy function for consumption.

@ Simulate an alternative series:
Compute rhs of Euler equation using numerical integration (g).
Solve for ¢, = g~ 1/7.
Solve for ki1 = zek® + (1 — 6) ke — ¢t

© Compare the two series.

Wellschmied (UC3M) Basic Numerical Concepts 106 / 107

References

BARILLAS, F. AND J. FERNANDEZ-VILLAVERDE (2007): “A Generalization of the Endogenous
Grid Method,” Journal of Economic Dynamics and Control, 31, 2698-2712.

CARROLL, C. D. (2006): “The Method of Endogenous Gridpoints for Solving Dynamic
Stochastic Optimization Problems,” Economics Letters, 91, 312-320.

Jupp, K., L. MALIAR, S. MALIAR, AND R. VALERO (2014): “Smolyak Method for Solving
Dynamic Economic Models: Lagrange Interpolation, Anisotropic Grid and Adaptive
Domain,” Journal of Economic Dynamics and Control, 44, 92-123.

Tsao, C.-S. AND J. TsiTsIKLIS (1991): “An Optimal One-Way Multigrid Algorithm for
Discrete Time Stochastic Control,” IEEE Transaction on Automatic Control, 36, 898—-914.

Wellschmied (UC3M) Basic Numerical Concepts 107 /107

	Motivation
	

	Two Controls
	

	Alternatives to "Standard" VFI
	

	References

